Validation of Automotive Control Applications using Formal Methods and metamodeling techniques

- Simone Silvetti, Esteco Spa & University Udine
- Mariapia Marchi, Esteco Spa
MDB (Model Based Development)

❖ process aimed at designing complex systems
❖ cost reduction
❖ reduce development time
MDB (Model Based Development)
Validation Process
Validation Process

❖ Use of block diagram tools (Simulink, Gt suite)

❖ Powerful Tools but complex
Validation Process

❖ Use of block diagram tools (Simulink, Gt suite)

❖ Powerful Tools but complex

❖ Use of natural languages
❖ Involves time events...

❖ Not rigorous
❖ Not Machine interpretable
Validation Process

- Use of block diagram tools (Simulink, Gt suite)
- Powerful Tools but complex

- Use of natural languages
 - Involves time events...
- Not rigorous
 - Not Machine interpretable
Validation Process

- Use of block diagram tools (Simulink, Gt suite)

- Powerful Tools but complex

- Use of natural languages
 - Involves time events...

- Not rigorous
 - Not Machine interpretable

FORMAL METHODS!
Validation Process
Validation Process
Validation Process
Validation Process
Validation Process

“If the engine speed (w) is always less than k_1 then vehicle speed (v) can not exceed k_2 in less than T sec”

$\neg (F_{[0,T]}(v \geq k_2) \land G(w \leq k_1))$
Robustness Semantics

\[\models \varphi \]
Robustness Semantics

$\vdash \varphi$?

$F(f>k)$

<table>
<thead>
<tr>
<th>Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes/no</td>
</tr>
</tbody>
</table>
Robustness Semantics

\[\vdash \phi \quad ? \]

F(f>k)

<table>
<thead>
<tr>
<th>Boolean</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes/no</td>
<td>+30 / -30</td>
</tr>
</tbody>
</table>

More Information!
The goal

\[f \rightarrow M \rightarrow M(f) \]
The goal

The optimization Problem

\[R = \min_{f \in F} [M(f), \varphi] \]
The goal

The optimization Problem

\[R = \min_{f \in F} [M(f), \varphi] \]

Counterexample

Safe!
The optimization process
The optimization process

Challenges

❖ Low number of model execution

❖ Inputs are functions (temporal series)!!
The optimization process

Challenges

- Low number of model execution
- Inputs are functions (temporal series)!!
The optimization process

Challenges

- Low number of model execution
- Inputs are functions (temporal series)!!

GP-UCB

Adaptive Control Point Parametrization
The Control Point Parametrization

Fix the times

interpolation
The Control Point Parametrization

Fix the times

n Control Points → n Variable to optimize
The Control Point Parametrization

Fix the times

interpolation

n Control Points -> n Variable to optimize
The **adaptive** Control Point Param.

Interpolation

n Control Points $\rightarrow 2n$ Variable to optimize
Problem

Increase the expressivity

but...

Doubled the variables
Problem

Increase the expressivity

but...

Doubled the variables

Solution

GP-UCB Optimizer
GP-UCB
GP-UCB
GP-UCB
GP-UCB

$P(x,y)$
GP-UCB

$P(x,y)$
GP-UCB

$P(x,y)$
GP-UCB

$P(x,y)$
GP-UCB

$P(x, y)$
GP-UCB

\[P(x, y) \]
Doubled the variables
Reduce Input Space
Adaptive Idea

Input Space
Adaptive Idea
Adaptive Idea

Input Space
Adaptive Idea
Adaptive Idea

Input Space
Automatic transmission
Automatic transmission
Automatic transmission

69 blocks: 2 integrators, 3 look-up tables, 3 2D look-up tables, Stateflow Chart
Results

Automatic Transmission

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>Natural languages</th>
<th>MTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_1)</td>
<td>The engine ((w)) and the vehicle speed ((v)) never reach (k_1) and (k_2), resp.</td>
<td>(G((w \leq k_1) \land (v \leq k_2)))</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>If the engine speed ((w)) is always less than (k_1) then vehicle speed ((v)) can not exceed (k_2) in less then (T) sec.</td>
<td>(\neg (F_{[0,T]} (v \geq k_2) \land G(w \leq k_1)))</td>
</tr>
<tr>
<td>(\varphi_3)</td>
<td>Within (T) sec the vehicle speed ((v)) is above (k_2) and from that point on the engine speed ((w)) is always less then (k_1)</td>
<td>(F_{[0,T]} ((v \geq k_2) \land G(w \leq k_1)))</td>
</tr>
<tr>
<td>(\varphi_4)</td>
<td>A gear increase from first to fourth in under than 10 sec, ending in an engine speed ((w)) above (k_1) within 2 sec of that, should result in a vehicle speed ((v)) above (k_2).</td>
<td>(((g_1 \cup g_2 \cup g_3 \cup g_4) \land F_{[0,10]} (g_4 \land F_{[0,2]} (w \geq k_1))) (\rightarrow G_{[0,10]} (g_4 \rightarrow X(g_4 \cup {u_{[0,1]}(v \geq k_2)}))</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>φ</th>
<th>S-TaLiro</th>
<th>$aCPP$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1</td>
<td>3,3</td>
</tr>
<tr>
<td>φ_1 ($k_1=4500$, $k_2=160$)</td>
<td>8.54 ± 5.72</td>
<td>10 ± 10,1</td>
</tr>
<tr>
<td>φ_2 ($k_1=4500$, $k_2=85$)</td>
<td>63.90 ± 53.20</td>
<td>124.82 ± 101.51</td>
</tr>
<tr>
<td>φ_3 ($k_1=4500$, $k_2=80$)</td>
<td>12.95 ± 7.37</td>
<td>49.8 ± 55.47</td>
</tr>
<tr>
<td>φ_4 ($k_1=4500$, $k_2=80$)</td>
<td>28.59 ± 24.15</td>
<td>32.65 ± 27.05</td>
</tr>
</tbody>
</table>

- **$aCPP$** reduces minimum number of evaluations by **50-70%**
- **GP-UCB** is slow.
Results

Time = \{\text{#Simulations}\} \times \{\text{Simulation Time}\} + \{\text{Optimizer time}\}

GP-UCB is slow
Results

\[\text{Time} = \#\text{Simulations} \times \text{Simulation Time} + \text{Optimizer time} \]

GP-UCB is slow

Future work

- from Matlab to Java (parallelization)
- multi-objective approach
- using fmi as simulator
Acknowledges

Esteco

Luca Bortolussi

Alberto Policriti
Thank You!

....and use Formal Methods